
DRAFT
TreeFold: Efficient Tree Folding with HyperNova

Daniel Rubin, Simon Judd, John Wu

Abstract

Folding-based proof systems enable efficient recursive proof composition by combining
multiple instance-witness pairs into a single proof. However, existing folding schemes process
instances sequentially, requiring O(n) steps for n sub-computations. We present TreeFold,
a tree-structured folding framework that adapts the HyperNova folding scheme to achieve
O(log n) sequential steps through parallelization.

Our key contributions include: (1) a hybrid commitment structure combining Pedersen
and Poseidon schemes for efficient folding and verification, and (2) three specialized aug-
mented circuits that enable secure tree-structured recursion. TreeFold demonstrates signif-
icant efficiency gains for large-scale computations while maintaining the security properties
of the underlying HyperNova system.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Technical Challenges . 3
1.3 Our Approach . 3
1.4 Contributions . 4

2 Preliminaries 4
2.1 CCS Arithmetization . 4
2.2 HyperNova Folding Scheme . 4
2.3 Commitment Schemes . 5
2.4 Tree Folding Framework . 5

3 HyperNova Multifold Algorithm 5
3.1 Mathematical Foundations . 6

3.1.1 Core Data Structures . 6
3.2 Complete Multifold Algorithm . 6
3.3 Quadratic Folding Formula . 7

4 TreeFold Architecture 8
4.1 System Overview . 8
4.2 Two-Layer Commitment Structure . 8

4.2.1 Layer 1: Witness Commitments (Pedersen) 8
4.2.2 Layer 2: Tree Aggregation (Poseidon) . 9

4.3 Global Copy Constraints . 9

5 Core Algorithms 9
5.1 Leaf Linearization . 10
5.2 Inner Node Folding . 11
5.3 Augmented Circuits Design . 11

5.3.1 πlin: Leaf Linearization Circuit . 11

1

DRAFT
5.3.2 πpcd: Inner Node Folding Circuit . 12
5.3.3 CEC : Elliptic Curve Circuit . 13

6 Security Analysis 13
6.1 Folding Correctness . 13
6.2 Perfect Completeness . 13
6.3 Knowledge Soundness . 14

7 References 14

2

DRAFT
1 Introduction

Folding schemes have emerged as a powerful technique for constructing efficient recursive SNARKs.
These schemes enable the combination of multiple proof instances into a single instance of compa-
rable size, making them ideal for proving large computations composed of repeated sub-circuits.
The HyperNova folding scheme [1], based on the CCS (Customizable Constraint System) arith-
metization, provides particularly efficient folding through its use of sumcheck protocols and
linearization techniques.

Key Point

TreeFold extends HyperNova’s folding capabilities to a tree structure, reducing sequen-
tial folding steps from O(n) to O(log n) while maintaining the security properties of the
underlying cryptographic system.

1.1 Motivation

Standard folding approaches process instances sequentially: given n instances, the prover folds
them one by one into an accumulator, requiring n− 1 sequential folding operations. This linear
dependency prevents parallelization and becomes a bottleneck for large computations. Consider
proving the execution of a program with millions of repeated operations—sequential folding
would require millions of steps, each dependent on the previous one.

The Mangrove framework [4] introduced tree-structured folding for Plonk-based systems,
demonstrating that instances can be folded in a binary tree structure, reducing sequential steps to
O(log n). However, Mangrove’s approach relies on Plonk arithmetization and specific polynomial
commitment properties that differ significantly from HyperNova’s CCS-based architecture.

1.2 Technical Challenges

Adapting tree folding to HyperNova presents several challenges:

1. Arithmetization Mismatch: HyperNova uses CCS arithmetization with matrix-based
constraints, while tree folding requires careful handling of cross-chunk constraints.

2. Commitment Compatibility: HyperNova’s folding relies on homomorphic properties of
Pedersen commitments, but tree structure requires Merkle-tree aggregation for efficiency.

3. Verification Circuits: Tree folding requires augmented circuits at each level to verify
the folding operation, which must be adapted to HyperNova’s sumcheck-based approach.

1.3 Our Approach

TreeFold addresses these challenges through two key innovations:
Hybrid Commitment Structure: We employ a two-layer approach:

• Pedersen commitments at the chunk level for homomorphic folding

• Poseidon-based Merkle trees for aggregating commitments up the tree

Specialized Augmented Circuits: We design three circuits that work together:

• πlin: Verifies CCS-to-LCCS linearization at leaves

• πpcd: Verifies correct folding at inner nodes

• CEC : Handles elliptic curve operations for commitment folding

3

DRAFT
1.4 Contributions

Our main contributions are:

1. A complete tree-folding framework for HyperNova that achieves O(log n) sequential com-
plexity while maintaining security.

2. Rigorous security analysis proving folding correctness, perfect completeness, and knowl-
edge soundness of the tree-structured system.

3. Detailed algorithms for leaf linearization and inner node folding that handle the subtleties
of combining CCS instances in a tree structure.

2 Preliminaries

Having established the motivation for tree-structured folding, we now present the foundational
concepts necessary to understand our construction. TreeFold builds upon four key technical com-
ponents: the CCS arithmetization that enables flexible constraint representation, HyperNova’s
folding mechanism that provides the cryptographic core, commitment schemes that ensure se-
curity and efficiency, and the tree folding paradigm that enables our logarithmic complexity
reduction.

We work over a prime field F and use two elliptic curves G1 and G2 forming a cycle. We
denote by λ the security parameter and by negl(λ) a negligible function.

2.1 CCS Arithmetization

The Customizable Constraint System [3] generalizes various arithmetizations through a matrix-
based formulation.

Definition 2.1 (CCS Instance). A CCS instance consists of:

• Structure s = (m,n,N, ℓ, t, q, d) where m is input size, n is witness size, N is constraint
count

• Matrices {Mj}tj=1 where each Mj ∈ FN×n is sparse

• Multisets {Si}qi=1 where each Si ⊆ [t] with |Si| ≤ d

• Constants {ci}qi=1 where ci ∈ F

A CCS instance is satisfied by public input x ∈ Fm and witness w ∈ Fn if:

q∑
i=1

ci ·
∏
j∈Si

⟨Mj · z, z⟩ = 0 (1)

where z = (x,w) ∈ Fm+n is the combined instance-witness vector.

2.2 HyperNova Folding Scheme

HyperNova [1] transforms CCS instances into a linearized form (LCCS) amenable to folding.

Definition 2.2 (LCCS Instance). An LCCS instance is a tuple U = (C, u, x, rx, v1, . . . , vt)
where:

• C ∈ G1 is a commitment to the witness

4

DRAFT
• u ∈ F is a scalar (always 1 for unrelaxed instances)

• x ∈ Fm is the public input

• rx ∈ Fs is the sumcheck challenge point

• vj ∈ F for j ∈ [t] are the matrix evaluations

The linearization process uses a sumcheck protocol to reduce the CCS constraint to linear
form. Given evaluation point rx, the linear values are:

vj =
∑

y∈{0,1}s′
Mj(rx, y) · z(y) (2)

2.3 Commitment Schemes

TreeFold employs two commitment schemes with complementary properties:
Pedersen Commitments: For witness vector w ∈ Fn and randomness r ∈ F:

C = Commit(w; r) =
n∑

i=1

wi ·Gi + r ·H (3)

where {Gi}ni=1 and H are generators of G1. Pedersen commitments are additively homomorphic:
Commit(w1; r1) + Commit(w2; r2) = Commit(w1 + w2; r1 + r2).

Poseidon Hash: A SNARK-friendly hash function optimized for arithmetic circuits. We
use Poseidon for Merkle tree construction due to its efficiency in-circuit.

2.4 Tree Folding Framework

The tree folding paradigm organizes the proving process hierarchically:

Definition 2.3 (Folding Tree). A folding tree T for n instances is a binary tree where:

• Leaves correspond to the n original instances

• Each internal node represents the fold of its children

• The root contains a single folded instance representing all leaves

The key insight is that all nodes at the same level can be processed in parallel, reducing
sequential complexity from O(n) to O(log n).

3 HyperNova Multifold Algorithm

With the foundational concepts established, we now examine the core HyperNova multifold
algorithm [1] that serves as TreeFold’s cryptographic foundation. This algorithm is not merely a
technical component—it represents a paradigm shift in recursive proof composition that makes
our tree-structured approach possible.

The significance of understanding this algorithm cannot be overstated: it transforms the
fundamental economics of proof composition from linear to logarithmic complexity. While
traditional approaches require O(n) sequential steps that bottleneck large computations, the
multifold algorithm enables the batch processing capabilities that TreeFold exploits in its tree
topology. It combines two main components:

1. LCCS Folding: Using sumcheck protocol to fold Linearized Committed CCS (LCCS)
instances

5

DRAFT
2. Constraint System Verification: In-circuit verification of the folding operation

Key Point

The multifold algorithm allows combining multiple proof instances into a single instance
while preserving the validity of the underlying statements. This breakthrough enables
scalable recursive proof composition and is the key innovation that makes TreeFold’s
logarithmic complexity reduction mathematically possible—without it, tree folding would
lack the necessary homomorphic properties.

3.1 Mathematical Foundations

3.1.1 Core Data Structures

Definition 3.1 (LCCS Instance (Multifold Notation)). For multifold operations, an LCCS
instance is represented as U = (W,X, rs, vs) where:

W ∈ G1 (witness commitment) (4)

X ∈ Fnio (public inputs/outputs) (5)

rs ∈ Fs (sumcheck randomness) (6)

vs ∈ Ft (matrix evaluations) (7)

This notation is equivalent to the TreeFold notation U = (C, u, x, rx, v1, . . . , vt) with the corre-
spondence: W ↔ C, X ↔ x, rs ↔ rx, and vs ↔ (v1, . . . , vt).

Definition 3.2 (CCS Witness). A CCS witness consists of:

W = (W1,W2, . . . ,Wn) ∈ Fn (8)

z = [X[0], X[1..],W] (combined vector) (9)

3.2 Complete Multifold Algorithm

The complete multifold algorithm performs the following high-level steps:

1. Generate challenges using random oracle

2. Construct sumcheck polynomial

3. Execute sumcheck protocol

4. Compute sigma values

5. Fold instances using quadratic weighting

6

DR
AF

T
Algorithm 1 HyperNova Multifold: prove_folding()
Require: LCCS1 = (W1, X1, rs1, vs1), LCCS2 = (W2, X2, rs2, vs2)
Require: CCSWitness1 = W1, CCSWitness2 = W2

Require: CCSShape with matrices M1,M2,M3

Ensure: Folded proof (πsumcheck, LCCSfolded,Wfolded)
1: Phase 1: Challenge Generation
2: RO.absorb(LCCS1); RO.absorb(LCCS2)
3: γ ← RO.squeeze_field_elements(1)[0]
4: ρ← RO.squeeze_field_elements(1)[0]
5:
6: Phase 2: Sumcheck Polynomial Construction
7: s← |rs1| ▷ Number of sumcheck rounds
8: z1 ← [X1[0], X1[1..],W1] ▷ Combined witness vector
9: z2 ← [X2[0], X2[1..],W2]

10: eq1 ← EqPolynomial(rs1)
11: eq2 ← EqPolynomial(rs2)
12: g(x)← 0 ▷ Initialize sumcheck polynomial
13: for j = 1 to 3 do ▷ For each matrix
14: Mj,z1 ← MLE(Mj · z1)
15: Mj,z2 ← MLE(Mj · z2)
16: g(x)← g(x) + γj · eq1(x) ·Mj,z1(x)
17: g(x)← g(x) + γ3+j · eq2(x) ·Mj,z2(x)
18: end for
19:
20: Phase 3: Sumcheck Protocol
21: claimed_sum←

∑3
j=1[γ

j · vs1[j] + γ3+j · vs2[j]]
22: (πsumcheck, state)← MLSumcheck.prove(RO, g)
23: rsp ← state.randomness ▷ Merged evaluation point
24:
25: Phase 4: Sigma Computation
26: σ1 ← compute_sigmas(CCSShape, LCCS1,W1, rsp)
27: σ2 ← compute_sigmas(CCSShape, LCCS2,W2, rsp)
28:
29: Phase 5: Instance Folding
30: LCCSfolded ← LCCS1.fold(LCCS2, ρ, σ1, σ2, rsp)
31: Wfolded ←W1.fold(W2, ρ)
32: return (πsumcheck, LCCSfolded,Wfolded)

3.3 Quadratic Folding Formula

The core folding operation uses quadratic weighting for security:

Quadratic Folding Equations:

Wfolded[i] = ρ ·W1[i] + ρ2 ·W2[i] (10)

Xfolded[i] = ρ ·X1[i] + ρ2 ·X2[i] (11)

Cfolded = ρ · C1 + ρ2 · C2 (commitment) (12)

vfolded[j] = ρ · σ1[j] + ρ2 · σ2[j] (13)

7

DRAFT
Property 3.3 (Security Property). Using (ρ, ρ2) instead of (ρ, 1−ρ) prevents malicious witness
construction attacks.

4 TreeFold Architecture

Having established the mathematical foundations of HyperNova’s multifold algorithm, we now
present TreeFold’s architectural innovations that transform sequential folding into a logarithmic-
complexity tree structure. The central challenge lies in maintaining the security and efficiency
properties of HyperNova while reorganizing the computation topology—this requires solving
three fundamental architectural problems: organizing instances in a tree topology, managing
commitments across multiple tree levels, and handling global constraints that span disconnected
chunks.

4.1 System Overview

The TreeFold system operates in three phases:

1. Leaf Processing: Linearize CCS instances to LCCS at the leaves

2. Tree Folding: Fold LCCS instances pairwise up the tree

3. Root Verification: Prove the final folded instance

ROOT NODE
Fold: (U[12],W[12]) + η(U[34],W[34])

= (U[1234],W[1234])

Final, to Verifier: (U[1234],W[1234]), πpcd

(Up1,Wp1), (up1, wp1) (Up2,Wp2), (up2, wp2)

INNER NODE
FoldInnerLCCCS

Fold: ((U1,W1) + γ(U2,W2))

Generate: (U[12],W[12])

INNER NODE
FoldInnerLCCCS

Fold: ((U3,W3) + ρ(U4,W4))

Generate: (U[34],W[34])

LEAF_1
LeafLinearizeCCCS

CCS → LCCCS

Generate: (U1,W1)

LEAF_2
LeafLinearizeCCCS

CCS → LCCCS

Generate: (U2,W2)

LEAF_3
LeafLinearizeCCCS

CCS → LCCCS

Generate: (U3,W3)

LEAF_n
LeafLinearizeCCCS

CCS → LCCCS

Generate: (U4,W4)

Figure 1: HyperNova Tree structure showing leaf linearization and inner node folding

4.2 Two-Layer Commitment Structure

TreeFold employs different commitment schemes at different levels for optimal efficiency:

4.2.1 Layer 1: Witness Commitments (Pedersen)

Each leaf j commits to its witness using Pedersen:

Cj = PedersenCommit(wj ; rj) (14)

These commitments support the homomorphic operations required for folding:

Cfold = ρ · C1 + ρ2 · C2 (15)

8

DRAFT
4.2.2 Layer 2: Tree Aggregation (Poseidon)

Pedersen commitments are organized into a Merkle tree using Poseidon:

hw = MerkleTreePoseidon([C1, C2, . . . , CT]) (16)

Similarly, public parameters for each leaf are committed:

hplk = MerkleTreePoseidon([plk1, plk2, . . . , plkT]) (17)

This two-layer approach provides:

• Efficient folding through Pedersen homomorphism

• Succinct aggregation through Poseidon Merkle trees

• Constant-size root representation regardless of tree size

4.3 Global Copy Constraints

Cross-chunk constraints are handled through a permutation argument:

Definition 4.1 (Permutation Product). For chunk j with permutation σj , the partial product
is:

pj =
∏
i∈Ij

(wi + α · i) + β

(wi + α · σi) + β
(18)

where (α, β) are challenges derived via Fiat-Shamir.

The global constraint is satisfied when:

T∏
j=1

pj = 1 (19)

This product is computed incrementally up the tree:

• Leaves compute their local pj

• Inner nodes multiply: pparent = pleft · pright

• Root verifies: proot = 1

5 Core Algorithms

With TreeFold’s architecture established, we now detail the concrete algorithms that transform
our theoretical framework into practical computation. These algorithms bridge the gap between
architectural design and implementation, showing precisely how instances flow through the tree
structure.

The algorithms work in concert to achieve our efficiency goals: leaf linearization prepares
instances for tree processing while preserving HyperNova’s security guarantees, and inner node
folding leverages the multifold algorithm within our tree topology. Together, they deliver the
logarithmic complexity that motivates TreeFold’s design.

9

DRAFT
Algorithm 2 Leaf Linearization
Require: CCS instance (x,w) for operation chunk
Ensure: LCCS instance U , augmented circuit proof
1: Linearize: Run HyperNova [1] sumcheck to convert CCS to LCCS
2: Commit C ← Commit(w), obtain evaluation point rx, linear values v1, . . . , vt
3: Output U ← (C, 1, x, rx, v1, . . . , vt)
4: Tree data: Compute chunk’s contribution to global constraints
5: p← permutation product for this chunk’s copy constraints
6: hw, hplk ← Poseidon hashes of commitment and proving key
7: Prove: Generate augmented circuit proof containing:
8: - Original computation correctness
9: - Sumcheck verification

10: - Tree folding data (p, hw, hplk)
11: return LCCS instance U and augmented proof

5.1 Leaf Linearization

The leaf prover transforms a fresh CCS instance into LCCS format suitable for tree folding.
The augmented circuit at the leaf encodes several constraints:

1. Application Logic: The original computation (SHA-256, ECDSA, etc.)

2. Tree Folding Gadgets:

• Permutation product computation

• Witness commitment and hashing

• Parameter commitment and hashing

3. Sumcheck Verification: Ensures the linearization was performed correctly

CCS CCS · · · CCS instances to be
linearized

(x(1), w(1)) (x(2), w(2)) · · · (x(n), w(n))
constraint
aggregation

Sumcheck Protocol
q∑

i=1

ci ·
∏
j∈Si

⟨Mj · z, z⟩ = 0

↓

Linearize at random point rx ∈ Fs

Sumcheck evaluation at rx
Linearized CCS (ready for folding)

U (1) = (C1, u1, x
(1), rx, v

(1)) U (2) = (C2, u2, x
(2), rx, v

(2)) · · · U (n) = (Cn, un, x
(n), rx, v

(n)) LCCS instances

Ci = Commit(w(i))

v
(i)
j =

∑
y∈{0,1}s′

Mj(rx, y) · z(i)(y)

Figure 2: CCS to LCCS linearization process showing sumcheck transformation

10

DRAFT
5.2 Inner Node Folding

Inner nodes fold two LCCS instances from their children into one.

Algorithm 3 Inner Node Folding
Require: Two LCCS instances U1, U2 from child nodes
Ensure: Folded LCCS instance UF , augmented circuit proof
1: Fold: Run HyperNova folding protocol to combine U1, U2

2: Derive folding challenge ρ, compute linear combination
3: Output UF ← ρ · U1 + ρ2 · U2

4: Tree data: Aggregate children’s contributions to global constraints
5: pF ← p1 · p2 (multiply permutation products)
6: hw, hplk ← Poseidon aggregation of child hashes
7: Prove: Generate augmented circuit proof containing:
8: - Folding correctness verification
9: - Tree constraint aggregation

10: - Hash tree updates
11: return Folded LCCS instance UF and augmented proof

5.3 Augmented Circuits Design

TreeFold employs three specialized circuits:

5.3.1 πlin: Leaf Linearization Circuit

Circuit F lin
α,β(x,w, rx, v1, . . . , vt, p, hw, hplk) verifies CCS-to-LCCS transformation. The circuit

enforces the following constraints:

11

DRAFT
Leaf Linearization Circuit Constraints

1. Original CCS constraints:

q∑
i=1

ci
∏
j∈Si

⟨Mjz, z⟩ = 0 (20)

2. Linearization correctness: For all j ∈ [t]:

vj =
∑

y∈{0,1}s′
Mj(rx, y)z(y) (21)

3. Commitment hash integrity:

hw = Poseidon(Commit(w)) (22)

4. Proving key hash integrity:

hplk = Poseidon(pk) (23)

5. Permutation product computation:

p =
∏

i∈chunk

wi + α · i+ β

wi + α · σ(i) + β
(24)

5.3.2 πpcd: Inner Node Folding Circuit

Circuit F pcd
ρ (U1, U2, p1, p2, hw,1, hw,2, hplk,1, hplk,2) verifies correct folding of child instances. The

circuit enforces:

Inner Node Folding Circuit Constraints

1. Instance folding:
UF = ρ · U1 + ρ2 · U2 (25)

2. Permutation product aggregation:

pF = p1 · p2 (26)

3. Witness hash aggregation:

hw,F = Poseidon(hw,1∥hw,2) (27)

4. Parameter hash aggregation:

hplk,F = Poseidon(hplk,1∥hplk,2) (28)

5. Commitment folding:
CF = ρ · C1 + ρ2 · C2 (29)

12

DRAFT
5.3.3 CEC : Elliptic Curve Circuit

Circuit FEC
ρ (C1, C2 ∈ G1, ρ) handles elliptic curve arithmetic in the base field. This circuit is

necessary because the main circuit operates over a different field than the commitment curve.

Elliptic Curve Circuit Constraints

1. Elliptic curve addition:

Cout = ρ · C1 + ρ2 · C2 (30)

2. Group membership:
C1, C2, Cout ∈ G1 (31)

3. Implementation note: When the main circuit uses BN254, this circuit operates
over Grumpkin to form a 2-cycle [6].

6 Security Analysis

Having detailed TreeFold’s implementation through concrete algorithms, we now establish the
security guarantees that ensure our efficiency gains do not compromise cryptographic soundness.
The transition from sequential to tree-structured folding must preserve the essential security
properties that make HyperNova trustworthy.

We establish three fundamental security properties for TreeFold: folding correctness ensures
that tree operations preserve statement validity, perfect completeness guarantees that honest
provers always succeed, and knowledge soundness prevents malicious provers from creating false
proofs. These properties collectively ensure that TreeFold’s logarithmic efficiency comes without
security trade-offs.

6.1 Folding Correctness

The folding operation must preserve the validity of the underlying statements.

Theorem 6.1 (Folding Correctness). Given valid instances (X1,W1), (X2,W2) ∈ RLCCS and
folding challenge ρ, the folded instance (XF ,WF) computed by TreeFold satisfies (XF ,WF) ∈
RLCCS.

Proof Sketch. The proof proceeds by checking each component:
Commitment Correctness: By Pedersen homomorphism:

Commit(WF) = Commit(ρW1 + ρ2W2) = ρCommit(W1) + ρ2Commit(W2) = CF (32)

Linear Constraints: For linear values vj :

vj,F = ⟨aj ,WF ⟩ = ⟨aj , ρW1 + ρ2W2⟩ = ρvj,1 + ρ2vj,2 (33)

Non-linear Aggregation: Permutation products multiply correctly since chunks have dis-
joint domains. Merkle hashes aggregate via Poseidon maintaining tree structure.

6.2 Perfect Completeness

Valid computations must always produce accepting proofs.

Theorem 6.2 (Perfect Completeness). For every valid witness (w1, . . . , wn) satisfying the com-
putation, TreeFold produces a proof that the verifier accepts with probability 1.

13

DRAFT
The key insight is that validity propagates from leaves to root:

• Leaves: CCS constraints satisfied ⇒ linearization succeeds

• Inner nodes: Valid children ⇒ folding produces valid parent

• Root: Permutation product equals 1, Merkle roots match commitments

6.3 Knowledge Soundness

The system must be secure against adversaries attempting to prove false statements.

Theorem 6.3 (Knowledge Soundness). For every PPT adversary A producing an accepting
proof, there exists an efficient extractor E that outputs a valid witness except with negligible
probability.

The extraction works in three layers:

1. PCD Extraction: Extract the entire proof tree from the root proof

2. Folding Extraction: For each inner node, extract child witnesses

3. Leaf Extraction: Extract original computation witnesses from leaves

Crucially, the folding operation acts as a "knowledge barrier"—producing a valid folding
proof requires knowing valid child witnesses, preventing forgeries from propagating up the tree.

7 References

References

[1] Abhiram Kothapalli and Srinath Setty. HyperNova: Recursive arguments for customizable
constraint systems. Cryptology ePrint Archive, Paper 2023/573, 2023. https://eprint.
iacr.org/2023/573

[2] Tianyu Zheng, Shang Gao, Yu Guo, and Bin Xiao. KiloNova: Non-Uniform PCD with
Zero-Knowledge Property from Generic Folding Schemes. Cryptology ePrint Archive, Paper
2023/1579, 2023. https://eprint.iacr.org/2023/1579

[3] Srinath Setty, Justin Thaler, and Riad Wahby. Customizable constraint systems for succinct
arguments. Cryptology ePrint Archive, Paper 2023/552, 2023. https://eprint.iacr.org/
2023/552

[4] Wilson Nguyen, Trisha Datta, Binyi Chen, Nirvan Tyagi, and Dan Boneh. Mangrove: A
Scalable Framework for Folding-based SNARKs. Cryptology ePrint Archive, Paper 2024/416,
2024. https://eprint.iacr.org/2024/416

[5] Simon Judd. EndGame: Field-Agnostic Succinct Blockchain with Arc. Cryptology ePrint
Archive, Paper 2024/1925, 2024. https://eprint.iacr.org/2024/1925

[6] Abhiram Kothapalli and Srinath Setty. CycleFold: Folding-scheme-based recursive arguments
over a cycle of elliptic curves. Cryptology ePrint Archive, Paper 2023/1192, 2023. https:
//eprint.iacr.org/2023/1192

[7] Srinath Setty. Folding Schemes: Why they matter and how they are not employed in the best
way possible. HackMD, 2024. https://hackmd.io/@srinathsetty/folding-schemes

14

https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/1579
https://eprint.iacr.org/2023/552
https://eprint.iacr.org/2023/552
https://eprint.iacr.org/2024/416
https://eprint.iacr.org/2024/1925
https://eprint.iacr.org/2023/1192
https://eprint.iacr.org/2023/1192
https://hackmd.io/@srinathsetty/folding-schemes

	Introduction
	Motivation
	Technical Challenges
	Our Approach
	Contributions

	Preliminaries
	CCS Arithmetization
	HyperNova Folding Scheme
	Commitment Schemes
	Tree Folding Framework

	HyperNova Multifold Algorithm
	Mathematical Foundations
	Core Data Structures

	Complete Multifold Algorithm
	Quadratic Folding Formula

	TreeFold Architecture
	System Overview
	Two-Layer Commitment Structure
	Layer 1: Witness Commitments (Pedersen)
	Layer 2: Tree Aggregation (Poseidon)

	Global Copy Constraints

	Core Algorithms
	Leaf Linearization
	Inner Node Folding
	Augmented Circuits Design
	lin: Leaf Linearization Circuit
	pcd: Inner Node Folding Circuit
	CEC: Elliptic Curve Circuit

	Security Analysis
	Folding Correctness
	Perfect Completeness
	Knowledge Soundness

	References

